A high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors | Nature Electronics


  • Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article  MATH  Google Scholar 

  • Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2022).

    Article  MATH  Google Scholar 

  • Matrone, G. M. et al. A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways. Nat. Commun. 15, 2868 (2024).

    Article  MATH  Google Scholar 

  • Wang, T. et al. A chemically mediated artificial neuron. Nat. Electron. 5, 586–595 (2022).

    Article  MATH  Google Scholar 

  • Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    Article  MATH  Google Scholar 

  • Keene, S. T. et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020).

    Article  MATH  Google Scholar 

  • Harikesh, P. C. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 13, 901 (2022).

    Article  MATH  Google Scholar 

  • Harikesh, P. C. et al. Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023).

    Article  Google Scholar 

  • van Doremaele, E. R. W., Ji, X., Rivnay, J. & van de Burgt, Y. A retrainable neuromorphic biosensor for on-chip learning and classification. Nat. Electron. 6, 765–770 (2023).

    Article  Google Scholar 

  • Wang, S. et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 6, 281–291 (2023).

    Article  MATH  Google Scholar 

  • Armada-Moreira, A. et al. Plant electrophysiology with conformable organic electronics: deciphering the propagation of Venus flytrap action potentials. Sci. Adv. 9, eadh4443.

  • Wu, W. et al. Selenophene substitution enabled high‐performance n‐type polymeric mixed ionic‐electronic conductors for organic electrochemical transistors and glucose sensors. Adv. Mater. 36, e2310503 (2023).

    Article  Google Scholar 

  • Yang, C.-Y. et al. A high-conductivity n-type polymeric ink for printed electronics. Nat. Commun. 12, 2354 (2021).

    Article  MATH  Google Scholar 

  • Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    Article  MATH  Google Scholar 

  • Kim, J. et al. Monolithically integrated high-density vertical organic electrochemical transistor arrays and complementary circuits. Nat. Electron. 7, 234–243 (2024).

    Article  MATH  Google Scholar 

  • Huang, W. et al. Vertical organic electrochemical transistors for complementary circuits. Nature 613, 496–502 (2023).

    Article  MATH  Google Scholar 

  • Wang, Y. et al. Acceptor functionalization via green chemistry enables high-performance n-type organic electrochemical transistors for biosensing, memory applications. Adv. Funct. Mater. 34, 2304103 (2023).

    Article  Google Scholar 

  • Zhang, Y. et al. Adaptive biosensing and neuromorphic classification based on an ambipolar organic mixed ionic–electronic conductor. Adv. Mater. 34, 2200393 (2022).

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  MATH  Google Scholar 

  • Cea, C. et al. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. Nat. Mater. 22, 1227–1235 (2023).

    Article  MATH  Google Scholar 

  • Pandey, A. P. & Sawant, K. K. Polyethylenimine: a versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng.: C 68, 904–918 (2016).

    Article  Google Scholar 

  • Momin, M. et al. 3D-printed flexible neural probes for recordings at single-neuron level. Device 2, 100519 (2024).

    Article  MATH  Google Scholar 

  • Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    Article  MATH  Google Scholar 

  • Wang, B. et al. Face‐on orientation matches vertical organic electrochemical transistors for high transconductance and superior non‐volatility. Adv. Funct. Mater. 34, 2312822 (2023).

  • Frankenstein, H. et al. Blends of polymer semiconductor and polymer electrolyte for mixed ionic and electronic conductivity. J. Mater. Chem. C 9, 7765–7777 (2021).

    Article  MATH  Google Scholar 

  • Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Article  MATH  Google Scholar 

  • Savva, A. et al. Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 30, 1907657 (2020).

    Article  MATH  Google Scholar 

  • Fabiano, S. et al. Poly(ethylene imine) impurities induce n‐doping reaction in organic (semi)conductors. Adv. Mater. 26, 6000–6006 (2014).

    Article  MATH  Google Scholar 

  • Wu, H. Y. et al. Influence of molecular weight on the organic electrochemical transistor performance of ladder‐type conjugated polymers. Adv. Mater. 34, e2106235 (2021).

    Article  Google Scholar 

  • Surgailis, J. et al. Mixed conduction in an n‐type organic semiconductor in the absence of hydrophilic side‐chains. Adv. Funct. Mater. 31, 2010165 (2021).

  • Sun, H. et al. Complementary logic circuits based on high‐performance n‐type organic electrochemical transistors. Adv. Mater. 30, 1704916 (2018).

  • Feng, K. et al. Cyano-functionalized n-type polymer with high electron mobility for high-performance organic electrochemical transistors. Adv. Mater. 34, 2201340 (2022).

    Article  Google Scholar 

  • Zare Bidoky, F. et al. Sub‐3 V ZnO electrolyte‐gated transistors and circuits with screen‐printed and photo‐crosslinked ion gel gate dielectrics: new routes to improved performance. Adv. Funct. Mater. 30, 1902028 (2019).

  • Gao, G. et al. Triboiontronic transistor of MoS2. Adv. Mater. 31, 1806905 (2018).

  • Cunha, I. et al. Reusable cellulose‐based hydrogel sticker film applied as gate dielectric in paper electrolyte‐gated transistors. Adv. Funct. Mater. 27, 1606755 (2017).

  • Hess, L. H. et al. High-transconductance graphene solution-gated field effect transistors. Appl. Phys. Lett. 99, 033503 (2011).

  • Zhang, S. et al. Synergistic effect of multi‐walled carbon nanotubes and ladder‐type conjugated polymers on the performance of n‐type organic electrochemical transistors. Adv. Funct. Mater. 32, 2106447 (2021).

  • Giovannitti, A. et al. N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016).

  • Paterson, A. F. et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nat. Commun. 11, 3004 (2020).

  • Chen, X. et al. n‐type rigid semiconducting polymers bearing oligo(ethylene glycol) side chains for high‐performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 9368–9373 (2021).

    Article  Google Scholar 

  • Feng, K. et al. Fused bithiophene imide dimer‐based n‐type polymers for high‐performance organic electrochemical transistors. Angew. Chem. Int. Ed. 60, 24198–24205 (2021).

    Article  Google Scholar 

  • Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).

    Article  MATH  Google Scholar 

  • Li, P., Shi, J., Lei, Y., Huang, Z. & Lei, T. Switching p-type to high-performance n-type organic electrochemical transistors via doped state engineering. Nat. Commun. 13, 5970 (2022).

  • Bischak, C. G., Flagg, L. Q., Yan, K., Li, C.-Z. & Ginger, D. S. Fullerene active layers for n-type organic electrochemical transistors. ACS Appl. Mater. Interfaces 11, 28138–28144 (2019).

    Article  Google Scholar 

  • Liu, K. K. et al. J‐type self‐assembled supramolecular polymers for high‐performance and fast‐response n‐type organic electrochemical transistors. Adv. Funct. Mater. 33, 2300049 (2023).

  • Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  MATH  Google Scholar 

  • Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  MATH  Google Scholar 

  • Catterall, W. A. & Few, A. P. Calcium channel regulation and presynaptic plasticity. Neuron 59, 882–901 (2008).

    Article  MATH  Google Scholar 

  • Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    Article  MATH  Google Scholar 

  • Keene, S. T. et al. Efficient electronic tunneling governs transport in conducting polymer-insulator blends. J. Am. Chem. Soc. 144, 10368–10376 (2022).

    Article  MATH  Google Scholar 

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  MATH  Google Scholar 

  • Bernards, D. A. & Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007).

    Article  MATH  Google Scholar 

  • Friedlein, J. T., McLeod, R. R. & Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 63, 398–414 (2018).

    Article  MATH  Google Scholar 

  • Li, P. et al. N-type semiconducting hydrogel. Science 384, 557–563 (2024).

    Article  MATH  Google Scholar 

  • Wu, H.-Y. et al. Stable organic electrochemical neurons based on p-type and n-type ladder polymers. Mater. Horiz. 10, 4213–4223 (2023).

    Article  MATH  Google Scholar 

  • Liu, T. et al. Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers. Nat. Commun. 14, 8454 (2023).

  • Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

    Article  MATH  Google Scholar 

  • Güldal, N. S., Kassar, T., Berlinghof, M., Unruh, T. & Brabec, C. J. In situ characterization methods for evaluating microstructure formation and drying kinetics of solution-processed organic bulk-heterojunction films. J. Mater. Res. 32, 1855–1879 (2017).

    Article  Google Scholar 

  • Was this article displayed correctly? Not happy with what you see?


    Share this article with your
    friends and colleagues.
    Earn points from views and
    referrals who sign up.
    Learn more

    Facebook

    Save articles to reading lists
    and access them on any device


    Share this article with your
    friends and colleagues.
    Earn points from views and
    referrals who sign up.
    Learn more

    Facebook

    Save articles to reading lists
    and access them on any device